89 research outputs found

    Millimeter-Scale Encapsulation of Wireless Resonators for Environmental and Biomedical Sensing Applications

    Full text link
    Wireless magnetoelastic resonators are useful for remote mapping and sensing in environments that are harsh or otherwise difficult to access. Compared to other wireless resonators, magnetoelastic devices are attractive because of their inherently wireless nature, and their ability to operate passively without a power source, integrated circuitry, or antenna. An open challenge for using miniaturized magnetoelastic resonators is application-tailored encapsulation and packaging. General packaging considerations for magnetoelastic resonators include not only the mechanical design but also electromagnetic transparency, adaptability of form factor with appropriate feature size, and chemical inertness and/or biocompatibility. In this thesis, the packaging of magnetoelastic resonators is investigated in two contexts: environmental sensing and biomedical sensing. The first context is for tagging and mapping applications in a high temperature (≥ 150°C), high pressure (≥ 10 MPa), corrosive environment, such as a hydraulic fracture branching from a wellbore. This work utilizes for the first time a micro molding process to thermoform liquid crystal polymer (LCP) packages for protecting magnetoelastic resonators. The package is < 10 mm3 and includes micron-scale features to support the resonator and allow it to vibrate with low loss. It has an average shear strength of 60 N, and can endure pressure up to 2000 psi (≈13.8 MPa). The second context is for implantable magnetoelastic resonators, which are used for sensing biological parameters. These packages must: protect the sensors during deployment through an endoscope, be biocompatible and chemically inert, be able to pass through a complex delivery path, and fit within a limited size. Protecting the resonator during delivery while still allowing interaction with biological fluids is achieved with polymeric packages incorporating features such as a perforated housing and tapered and smoothed edges. This approach also includes features to aid in assembling with plastic stents via polyethylene tethers. The packaged resonator must pass through a complex delivery path without damage due to bending, so the compromise between two architectures – one mechanically flexible (Type F) and one mechanically stiff (Type S) – is evaluated. The primary advantage of the Type F package is the flexibility of the package during the delivery process while that of the Type S package is to maintain a strong signal even when the stent is in a curved bile duct. The length, width, and maximum thickness of the Type F package are 26.40 mm, 2.30 mm and 0.53 mm, respectively. The Type S package has an outer diameter of 2.54 mm, a length of 15 mm, and a maximum thickness of 0.74 mm. The two package types are tested in benchtop flexibility tests, and in vivo and in situ in porcine specimens. The animal tests demonstrate partial functionality of both types of packages, while also indicating that smaller and more elastic package designs are needed. Remaining in the implantable sensor context, an improved and miniaturized resonator design is explored. Miniaturizing the resonator accordingly allows miniaturization of the packaging, reducing the impact on the overall functionality of the medical device. The fabricated sensor is 8.25 mm long, 1 mm wide with the largest thickness of 218 μm. The resonant frequency of the resonator is around 173 kHz which is similar to that of a 12.5 mm long ribbon sensor. This resonator design is self-biased, simplifying the packaging and assembly compared to previous designs.PHDElectrical & Computer Eng PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146089/1/jqjiang_1.pd

    The mean staple length of wool fibre is associated with variation in the ovine keratin-associated protein 21-2 gene

    Get PDF
    Wool and hair fibres consist of a variety of proteins, including the keratin-associated proteins (KAPs). In this study, a putative ovine homologue of the human KAP21-2 gene (KRTAP21-2) was identified. It was located on chromosome 1 as a 201-bp open reading frame (ORF) in the ovine genome assembly from a Texel sheep (v.4 NC_019458.2: nt122932727 to 122932927). A polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis of this ORF, and subsequent DNA sequencing, identified five sequences (named A-E). The putative amino acid sequences that would be produced, shared some identity with each other and with other KAPs, but they were most similar to ovine KAP21-1, and phylogenetically related to human KAP21-2. The location of the ovine KRTAP21-2 sequence was consistent with the location of human KRTAP21-2, and this suggests they represent different variant forms of ovine KRTAP21-2. Variation in this gene was investigated in 389 Merino (sire) × Southdown-cross (ewe) lambs. These were derived from four independent sire-lines. The sequence variation was found to be associated with variation in five wool traits: including mean staple length (MSL), mean fibre diameter (MFD), fibre diameter standard deviation (FDSD), prickle factor (PF), and greasy fleece weight (GFW). The most persistent effect of KRTAP21-2 variation was with variation in MSL; with the MSL of sheep of genotype AC being 12.5% greater than those of genotype CE. A similar effect was observed from individual variant absence/presence models. This suggests that KRTAP21-2 should be further investigated as a possible gene-marker for improving MSL

    The existence of solutions for -Laplacian boundary value problems at resonance on the half-line

    Get PDF
    The concept of collective efficacy, defined as the combination of mutual trust and willingness to act for the common good, has received widespread attention in the field of criminology. Collective efficacy is linked to, among other outcomes, violent crime, disorder, and fear of crime. The concept has been applied to geographical units ranging from below one hundred up to several thousand residents on average. In this paper key informant- and focus group interview transcripts from four Swedish neighborhoods are examined to explore whether different sizes of geographical units of analysis are equally important for collective efficacy. The four studied neighborhoods are divided into micro-neighborhoods (N=12) and micro-places (N=59) for analysis. The results show that neighborhoods appear to be too large to capture the social mechanism of collective efficacy which rather takes place at smaller units of geography. The findings are compared to survey responses on collective efficacy (N=597) which yield an indication in the same direction through comparison of ICC-values and AIC model fit employing unconditional two-level models in HLM 6

    A microencapsulation approach to design microbial seed coatings to boost wheat seed germination and seedling growth under salt stress

    Get PDF
    IntroductionSalt stress in seed germination and early seedling growth is the greatest cause of crop loss in saline-alkali soils. Microbial seed coating is an effective way to promote plant growth and salt resistance, but these coatings suffer from poor seed adhesion and low survival rates under typical storage conditions.MethodsIn this study, the marine bacterium Pontibacter actiniarum DSM 19842 from kelp was isolated and microencapsulated with calcium alginate using the emulsion and internal gelation method.ResultsCompared to unencapsulated seeds, the spherical microcapsules demonstrated a bacterial encapsulation rate of 65.4% and survival rate increased by 22.4% at 25°C for 60 days. Under salt stress conditions, the seed germination percentage of microcapsule-embedded bacteria (M-Embed) was 90%, which was significantly increased by 17% compared to the germination percentage (73%) of no coating treatment (CK). Root growth was also significantly increased by coating with M-Embed. Chlorophyll, peroxidase, superoxide dismutase, catalase, proline, hydrogen peroxide and malondialdehyde levels indicated that the M-Embed had the best positive effects under salt stress conditions.DiscussionTherefore, embedding microorganisms in suitable capsule materials provides effective protection for the survival of the microorganism and this seed coating can alleviate salt stress in wheat. This process will benefit the development of sustainable agriculture in coastal regions with saline soils

    Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period

    Get PDF
    Circular RNAs are a class of noncoding RNA with a widespread occurrence in eukaryote tissues, and with some having been demonstrated to have clear biological function. In sheep, little is known about the role of circular RNAs in mammary gland tissue, and therefore an RNA sequencing approach was used to compare mammary gland tissue expression of circular RNAs in 9 Small Tail Han sheep at peak lactation, and subsequently when they were not lactating. These 9 sheep had their RNA pooled for analysis into 3 libraries from peak lactation and 3 from the nonlactating period. A total of 3,278 and 1,756 circular RNAs were identified in the peak lactation and nonlactating mammary gland tissues, respectively, and the expression and identity of 9 of them was confirmed using reverse transcriptase-polymerase chain reaction analysis and DNA sequencing. The type, chromosomal location and length of the circular RNAs identified were ascertained. Forty upregulated and one downregulated circular RNAs were characterized in the mammary gland tissue at peak lactation compared with the nonlactating mammary gland tissue. Gene ontology enrichment analysis revealed that the parental genes of these differentially expressed circular RNAs were related to molecular function, binding, protein binding, ATP binding, and ion binding. Five differentially expression circular RNAs were selected for further analysis to predict their target microRNAs, and some microRNAs reportedly associated with the development of the mammary gland were found in the constructed circular RNA–microRNA network. This study reveals the expression profiles and characterization of circular RNAs at 2 key stages of mammary gland activity, thereby providing an improved understanding of the roles of circular RNAs in the mammary gland of sheep

    MAP-Based Audio Coding Compensation for Speaker Recognition *

    No full text
    The performance of the speaker recognition system declines when training and testing audio codecs are mismatched. In this paper, based on analyzing the effect of mismatched audio codecs in the linear prediction cepstrum coefficients, a method of MAP-based audio coding compensation for speaker recognition is proposed. The proposed method firstly sets a standard codec as a reference and trains the speaker models in this codec format, then learns the deviation distributions between the standard codec format and the other ones, next gets the current bias via using a small number adaptive data and the MAP-based adaptive technique, and then adjusts the model parameters by the type of coming audio codec format and its related bias. During the test, the features of the coming speaker are used to match with the adjusted model. The experimental result shows that the accuracy reached 82.4 % with just one second adaptive data, which is higher 5.5 % than that in the baseline system

    The Existence of Positive Solutions for Fractional Differential Equations with Sign Changing Nonlinearities

    No full text
    We investigate the existence of at least two positive solutions to eigenvalue problems of fractional differential equations with sign changing nonlinearities in more generalized boundary conditions. Our analysis relies on the Avery-Peterson fixed point theorem in a cone. Some examples are given for the illustration of main results

    Solvability of fractional differential equations with integral boundary conditions at resonance

    No full text
    By using the coincidence degree theory due to Mawhin and constructing suitable operators, some sufficient conditions for the existence of solution for a class of fractional differential equations with integral boundary conditions at resonance are established, which are complement of previously known results. The interesting point is that we shall deal with the case dimKerL=2\text{\rm dim}\text{\rm Ker}L=2, which will cause some difficulties in constructing the projector QQ. An example is given to illustrate our result

    Differential Settlement of Track Foundations Identification Based on GRU Neural Network

    No full text
    The timely identification of differential settlement of track foundations is of great significance for the safety of train operation and the maintenance of track structures. However, traditional monitoring techniques cannot meet the requirements of efficient, real-time, and automatic monitoring of track foundation settlement. In order to solve these problems, a real-time identification method based on a gated recurrent unit (GRU) neural network is proposed for the differential settlement of track foundations monitoring. According to parameter sensitivity analysis, the vertical acceleration of the vehicle is selected as the known data fed into the GRU network for differential settlement identification. Then the GRU network is employed to establish the nonlinear relationship between the vertical acceleration of the vehicle and the differential settlement of the track foundation. The results indicate that the longitudinal continuous differential settlement distribution curve of track foundations could be accurately identified with GRU neural network through the real-time vibration response of the vehicle–track. The current method may provide a new means for the real-time and efficient identification of the differential settlement of track foundations
    • …
    corecore